DEPARTMENTS
62 MicroSeries

74 From the Bench

78 Silicon Update

62 Issue 86 September 1997

MICRO

SERIES

Ingo Cyliax

MC68030 Workstation

The Hardware

What do you

do when

components
are no longer sold? Ingo
built his own system. It
was the only cost-effective

way he could get a 68k
platform to teach
assembly-language
programming when
Motorola’s MC68000
ECB was discontinued.

Circuit Cellar INK@

}he MC68030-
wyorkstation project
started when our fac-
ulty group realized that
there was no good 68k platform for
teaching assembly-language program-
ming. The traditional MC68000 ECB
from Motorola is no longer sold, and
the evaluation kits for the 683xx MCUSs
weren't exactly right for some tasks—
not to mention that they’re overpriced.
So, I suggested building our own teach-
ing platform.

We quickly decided this new system
had to be 68k based, since many text-
books use this processor as one of the
architecture examples. It was also
decided that it needed an ISA-compat-
ible expansion bus as well as a scan-
code-based keyboard and some kind of
memory-based display interface.

Why ISA bus on a 68k-based system?

ISA bus is a very cost-effective sys-
tem, so it fit our limited budget. Since
most of the PCs in the department are
being continuously upgraded, I was
able to rescue many 8-bit VGA and
Ethernet cards from our surplus bins.

I also considered “cleaner” buses
such as PCI and VME, but could not
justify buying cards for these buses
when free cards were available.

In addition to the ISA-bus slots, I
added three custom “cpubus” connec-
tors which provide access to the unbuf-

fered CPU signals. So, coprocessors

BD16-BD31L
bas and fast memory can be added to this
CLK4 ij cLi system.
calelias I also decided to use LSI/MSI TTL
components when possible. This way,
" every part in the system is identifiable,
SoTRI
e 80 it should be easy for students to
R;’égjgﬁggi%ig” infer what each component does from

*#BDS——q¥DS #DTACK]

standard datasheets.

BAo-BAZ23 T Q&RESET 10
oo . 12 There are two exceptions. One is a
1 I .
2as e 1 PAL for decoding the bank selects for
BA3 5.4
BAd sl ® e memory. Also, I used an
" = the DRAM ry. Also, 1 d
PR I - MC68901 MFP-a companion 1/0 chip
Sl sof &= to the 68k line. It contains some timers,
o1 e xtrp2? Y 804 i
sgptNaeer o parallel 1/0, and the serial port used
+5U— .
03 ol A st for the keyboard interface.
J3-1 FOM;R_GOOD L R14 T4LS04 J—4€E1 58|
02 o | YL HRlsos ¢ SKE s met] >*—\2 =k | Since this machine is essentially
Je-po RESET.BUITCH 12 INZ 4 eeset OL0F B A .
e Ja 2 > teos 1S) ot built from scratch and I wanted to
1 10uF 5 >° .
1 v Giee, wh e follow the open methodology in hard-
° Iros 11 [ot0 1 ware and software, this meant writing
RESET 4080 many components from scratch and
IRQY 9 8 N . N
Figure 2a—The AT-compatible keyboard 1RO et {> using freely available tools if the source

interface is provided by the MC68901 Muttifunc-
tion Peripheral Controller (MFP}(U34).1t also
interfaces to the speaker and consolidates

code was available. Later in the series,
I'll describe the software-development
some of the 16-bit ISA-bus interrupts. The tools I used and the software I wrote
7415148 (U40) encades the interrupt requests for this system.

info the interrupt /eve/ for the CPU. By the way, the schematics, PCB
artwork, and program sources are

J1A (—EIDIE—BDal
ﬁ GNB *OCHCK EA‘“ 031
ALE: uBE s 4EY—0J8-2 RESEY e [D); A3 BD3D
S92 TURBO LED IR09 B4lrpag oc [paBo2s
BAS Js-1 BS| oy b (85 Bo2s]
B proz 03 :g_g’ Sgg; BAO-BAZ3
ﬁ Sy 02 lag BD2S
T e 0a A9 BD24
8104 gnp 10CHRDYHAL2 10CHRDY
BLLJY ymem AEN ALY 8
FTEY Mkt e e
BA1E-BA31 Bl4 *T0W Alg Al4 BAL17Z
l B15 ¥I10R AlLT BALE
DACK3 ALB
Bl BALS
y3l 17]oR02 817 BAL4
7415151 B *DACK L AL4
12 e BL8ippa1 a13[Aie Bald
D
oL E1d vasa R11 2 wREF St az(AL3 12
"4 74LSes F4.7ke CLK: CLK ALl
T D5) RO? 821 IRG7 ALe AZ1 BALO
24 v DSACKS CITTE] i o |A22 BAS
> 3 ulf RAS B22] IRGS as AZI BAB
Sipz 4,762 S EEY Fre) a7 [924 BA?
oLz o1 2 IR014 JTIRG3 B2S|1nos e A8
623 L—a be WNE 1RO1S 26 woacKe o [#2E BAS
BAZZ e N 2 8225 a4 (027 BA4
BAZL 1 S aLe-B28] e a3 jA2g Ba3
b~ I 829 e o2 [azg BAZ
- 2 cLks-B2o5c a1 [030 BaL
B) 831 oyp ~o (621 BAR
usz 9
73L5151 5 AT [TiE
1247 i DIER SBRE[C
13105 vase R:2 D230 LAz A23
o a8 7iLSos $4.7%2 role pali2’ o e Az2
T%DA v pSACKL | 45U R —Ddirory S
22 Y b 1ra13 ggmolz L6209 : 219
2 [ROIS La19}“
3y l 1RQI4 D7)ceis Laiglc7_BA18
4 D8§ Cg BA17
DO *DACK® LAL
8423 g D3nza0 *t1EnR(CY
BAZ2 ioly Diloacks | amemd el
1 c
= L T ~R/XW_B83@1 001121 prRas S08 (:111 Egis
) B TE sos—gﬁ—
= i DL 3oras sp1o|CLd BOLE
3z SLknack? sp11fEld SIS
7als138 RQ7 sp.REte T2
1 15 yrom BigeY st oher
BA3L 4l viblt yr *CS_68g01 DigltriesTeR | spidi T ERER
Sdger vapid M sho 5015{CL8 BOC3
D yi4c
My g fALS00 IRG3-IRGLS
BA23 3 Jie Te &
BA2Z 2 vebe —
4
~Baet Ly ypp? 74l s08
19 £ R
uzsB 1
4 74L 508
& | = .
S J u37C
730532
i]
8 A) . h B .
- To] > Figure 2b—Here’s one of the ISA-bus (J1) interfaces, which is replicated
uzeE iR several times on the motherboard. Also, the 74LS138 (U33) provides Ihe
11 H
YBRU 1J[>oz__4 13 R0 decoding for the lower 2 Gb of addresses.

Circuit Cellar INK® Issue 66 September 1997 63

Table I--Since the MC68030
processor has no /0 instructions,

00700000-007fFfff 8
00800000-7FfFfffff -
80000000-803fffff 32
00400000-ffffffff 32

4-Mb

ISA-bus memory
repeat above (0- 7££1ffT)
DRAM

repeat DRAM

Address Size Description ‘)

the ISA bus is broken up into four
00000000-000Fffff 8 64-Kb EPROM address maps. Each causes a
00100000-001fFffff 8 32-Kb SRAM different bus cycle to occur on the
00200000-002fffff 8 MFP ISA bus.
00300000-003fffff illegal
00400000-004fffff 16 ISA-bus /O
00500000-005fffff 16 1SA-bus memory
00600000-006Fffff 8 ISA-bus I/O

The MC68030 also
has a burst-mode opera-
tion to fill its cache

available via ftp, and you’re free to use
them for noncommercial purposes.

HARDWARE OVERVIEW

The system can be roughly divided
into four major groups-the CPU, ISA
bus, DRAM interfaces, and onboard 1/0.
There’s only one onboard 1/O device
on this system-the AT-compatible
keyboard interface.

I chose the MC68030 for my CPU. It
has a flexible bus interface and an inte-
grated MMU module. Since it has
dynamic bus sizing, it was casy to
provide interfaces for §-/16-bit ISA
bus, 32-bit DRAM, and 8-bit EPROM
and SRAM with minimal logic.

The processor asks for an object,
and the system responds with the port
size available. If the system port size is
smaller than the object to fetch, the
internal bus interface in the MC68030
automatically sequences and muxes
the data to the appropriate place.

The MC68030 has two bus termina-
tion modes. The asynchronous termi-
nation mode, indicated by asserting a
combination of DSACKO and DSACKI,
is used when dynamic bus sizing is
required.

Its timing is also compatible to the
68k bus cycle. It is asynchronous be-
cause it assumes the data and DSACKx
signals are asserted asynchronously
and have to be synchronized to the
CPU clock before processing.

The synchronous bus cycle, indicated
by asserting the STERM signal, shows
that the data and STERM are synchro-
nous to the processor clock and can be
processed without an extra synchroni-
zation cycle. Also, the STERM signal
indicates that the port size is 32 bits.
STERM allows the fastest possible bus
timing on the MC68030.

from page-mode DRAMs

using an extension of the synchronous-

bus-cycle mode. But since this system
is low end, this mode wasn’t imple-
mented. The data and instruction
caches also work well with the asyn-
chronous and nonburst-mode synchro-
nous-bus-cycle modes.

Given the flexible bus interface, the
MC68030 is easy to design with. 1
ended up using asynchronous-bus-cycle
modes when addressing the ISA bus (8-
and 16-bit ports), PROM/SRAM (8-bit
port), and onboard 1/O resources {8-bit
port). I used synchronous cycles for
speed when addressing the system’s
DRAM (32-bit port).

A 741.5138(8:1 selector) decodes the
1/0, ISA bus, PROM, and SRAM address
space in the lower 2-Gb address space.
The higher order address bit selects the
DRAM which, even though 4 Mb is
implemented, repeats in the 2-Gb
upper address space.

By placing the DRAM in the upper
address space, | was able to decode the
8-bit PROM in the lower memory where
the process fetches its reset vector and
initial stack pointer. Table 1 shows the
address map of the whole system.

A shift register generates differently
timed bus acknowledge signals. These
are selected using a 8: 1 selector-one
for each DSACKx signal-to generate
different wait states for each decoded
object. Hence, the ISA-bus 1/O cycle
has to be longer than an SRAM access.

Another shift register generates a
bus-error exception if no bus acknow-
ledgement is received. This feature
implements a bus timeout for refer-
ences to illegal address ranges.

All that remains to interface to the
68030 is the interrupt interface and a
single-phase 1 6-MHz clock, which is
derived from a TTL clock module.

Circuit Cellar INK@

If you need 1/0...

Add these numbers up:

80C552 a ‘51 Compatible Micro
40 Bits of Digital I/O

8 Channels of 10 Bit A/D

3 Serial Ports IRS-232 or 422/485)
2 Pulse Width Modulation Outputs
6 Capture/Compare Inputs
1Real Time Clock

64K bytes Static RAM

1+ UVPROM Socket

5 12 bytes of Serial EEPROM

1 Watchdog

1 Power Fail Interrupt

1 On-Board Power Regulation

It adds up to real 170 powef!

Thats our popular OEM
5525BC-40, priced at just $299 in
single quantities. Not enough 1/0?
There is an expansion bus, too!
Too much 1/0? We’ll create a
version just for your needs, and
pass the savings on to youl
Development is easy, using our
Development Board: The

§52SBC-50 Development board
with ROM Monitor for $349.

Our popular 803 1SBC can now be
shipped with your favorite 8051
family processor. Models include
80C5 1 FA, DS80C320,80C550,
80C652, 80C154,80C851 and
more. Call for pricing today!

Truly Low-cost
In-Circuit Emulator

The DrylCE Plus is a low-cost
alternative to conventional ICE

products. Load, single step,
interrogate, disasm, execute to
breakpoint. Total price for the

base unit with most pods is a low
$448. Call for brochure, or World
Wide Web at www.hte.com.

Call for your custom product
. needs. Quick Response,
HiTech Equipment Corp.
9672 Via Excelencia
ﬁ San Diego, CA 92126
i [Fax: (619) 530-1458]
Since 1983

— (619) 566-1 892 —

VisA

i

1

Internet e-mail: info@hte.com
World Wide Web: www.hte.com

#133
Issue 86 September 1997 67

MC68030's interrupt system is also
very flexible. (What did you expect?) It
uses multilevel priority-based interrupts
(IRQ1-7) to request an interrupt. IRQ7
is the highest level and is not maskable.
The external interrupter asserts an
interrupt by encoding it into the three
interrupt signals IPL[0:2].

In this design, I used a 74L5148 (8-1
priority encoder). Figure 2a shows the
interrupt circuitry and ISA-bus and
keyboard interfaces, while Figure 3a
shows the CPU.

Once the MC68030 sees the interrupt
request by noting that one or more of
IPL[0:2] are asserted, it responds to the
interrupt if the interrupt-request level
is higher than its current interrupt mask
or if it’s a level 7. It starts an interrupt-
acknowledge cycle that resembles a
regular bus cycle, except that a special
bus cycle is indicated with the FC[0:2]
function codes.

The interrupt-acknowledge cycle can
be terminated by a peripheral by supply-
ing an external interrupt vector and
asserting one of the bus termination
signals or by asserting AVEC. If the cycle
is terminated with AVEC, it uses a
predetermined internal interrupt vector.

A large real-time system may use
many interrupt vectors to tell the

processor what the source of the inter-
rupt was and how to handle it without
spending much time hunting down the
cause. In this design, it's acceptable to
spend time polling devices for the inter-
rupt cause, especially since ISA-bus

devices don’t generate interrupt vectors.

Generating the autovector bus ter-
mination was easy. I simply decoded
the function code FC[0:2] to indicate
an interrupt-acknowledge cycle and
assert AVEC.

The integral MMU was an interest-
ing option, since it enables the use of
this platform in a serious OS-type class
project (e.g., virtual memory or memory
management in modern OSs). In fact, I
developed a version of Minix that uses
the MMU, which the students can
dissect and explore. No external hard-
ware is needed to enable the use of
MMU functions on the MC68030.

The ISA-bus interface uses four of
the select lines to form the address
decoder to implement four address
maps. Each address map indicates one
of the possible ISA-bus cycles.

There are 8- and 16-bit memories
and 8- and 16-bit I/O accesses. The
memory accesses use the signals
MEMRD and MEMWR to indicate a
memory read and write on the ISA bus.

An 170 cycle uses the IORD and IOWR
signals.

Figure 2b shows how the ISA-bus
interface is implemented. An ISA-bus
card can also extend a bus cycle by
asserting the signal IORDY. It was
necessary to implement this signal,
since many VGA cards stretch the
CPU bus cycle to deal with memory
contention to the video memory.

In addition to expanding the inter-
rupt system by implementing the 16-bit
expansion interrupts, the MC68901
Multifunction Peripheral (MFP) handles
the AT-compatible keyboard interface.

The MFP expands the number of
interrupts by using six of the eight
general-purpose 1/0 pins as external
interrupt pins. They can be programmed
to be edge as well as level sensitive.
The MFP interrupt controller makes it
easy for software to find the interrupt
source by providing some registers that
indicate pending interrupts.

There are also facilities for masking
any of the interrupts and clearing pend-
ing interrupts. Table 2 shows the inter-
rupt map of this system. As you can
see, many of the interrupts are handled
by the MFP and are presented as a
single interrupt request at level 6 to
the CPU.

o1 vion
con30 U1, 14 v | {80
1l reall2 74ALS245 BAS
¥HALT H2 C1 ig 2
us A ST i Fea[oL o A os
74L5164 415164 741505 | ¥BERR JETH hpetet Rowig 12 [T ieles a5lz *e
G‘\%DLs GH) i; L *DSRCKB'—FJC %DSACKS *DS J:[; 0 ;: S co
BAS QGH-=DL? oG MDSACK L %D SACK 1 *AS ™ 1
g [LL ¥STERM G MM 13 7
+5U oFriip s oF| TERM ¥DBEN 2
1 (1o s (e KBGACK _C3, Pz 12 s
o o5 ssuetla o K *ECS ? A
usa, 2l woifole Tzl &= ¥BR Al »ocs PR3 11 gl
7ils32 (s [s_ ¥CIIN L Ty
1 oct2-oL3 o] 1IN *RMC vz?
) 4 g 4 ¥CBACK _JJ, B2 A8 EN
2 L ol cL ol K Jidwceack G P22 PAL16L 8
SET V) =N) (3 wCDLS il 2 1T
oatd-oLy c ol DIS *CIOUT S B 1 liz
RIMUDLS F 130500 K1 1 ol
cLk16—) iz nUDIS | ACBREGP; T, = 211z 1oz
xipLoiurPie asTaTUSPTS sre—2115 Tros it
KIPL1-2SqhIPLL HREF TLLPE BAl—HT14 Tr04HS
|1 us HIPL2-25qwIPL2 *¥IPENDP=S" S
S 745163 i B W i) cAS—2HIS 1/0 AS3
&, COoltL I el, 1.7Ke c1zL K3 RCAS—={I& 106 *CAS2
S iz 3 17 10 *CASL
t—31C acscikz —21¢ = Az A £l1s o Ase
1B QB[SCLKa 518 Do RO Sirg
sv + 3l on—i~CLK3 = R aL R Ulie
ur e = L oz a2t~
L4 osc.mop S P L1 gf 24 C13 A4 Power Table
2L]7 K1l Cc AS
8 I iz P2 &S TS Part E Gnd
- +eu 112 os e UL |CE,D4,D18,F2,F1L, [C5,€7,C9,E5,EL1,F3,
o7 a7 H3) H1'L KA, K10, LB [F11,63,G11,J3, L5~LY
N13 B12 A8
= - 08 ng uZ 20 ie
Mi1 Cl1 A9
D3 A U3-U4 14 7
= L1010 NS ETERT) U3 12
10k2 NiZ3n1y i lcleatt B
~~~~~~~~~ f 1o Bi1 A12 Uz-U1o 14 L
+8U 2 _XhelT STV A A ITENTE Vil-viz i6 g
U 3 ABGACK /_“METDL :i‘. B10 Al4 [uis-ui4 14 i
f Ni@ All ALS [ Vis-vze 2@ ie
< —n1s ars LAl [uza-Uzs ic g
] T Q16 e a1 UZT 20 19
k] e 8151 2 a1? Uzs T >
uL3R. 1 3 N5 1h1g argfss Al
U13A. < f N7 101 g ey R Y25-U30 28 14
= LS £19755 ap 031033 6 B
Loy ST £200 a5 n2i U34 i 38
R2 1 ME |nos a22iB7 AZ2 V35-U3g 4 7
Toka NS oo nogla7_a23 ) vie 5 z
»»»»»»»»» HE, AB AR
ALE_ REERR o2+ pgq BB 224 ]
+8U N4 85 AZS
3 #STERM o {pes Azs o225
4 #8R [—D2 bz azg oS 026, |
E WCTIN 14 ipz7 a27tB5 HET]
£ xcBACK 3028 fersaaesy|  Figure 3a—At first the MC68030 (U1) looks daunting, but after
A L4 a3 Aze Y \ , . . :
- #HUOTS Nioae P e looking at it more closely, it {ums out to be fairly easy fo interface.
e The shift register (U3) generates wait slates, while counters U5
D803 1 e’ AO-AT L’

and U6 prescale the system clock for various uses. The D flip-flop
(U13a) implements the refresh request flag.

68 Issue 66 September 1997

Circuit Cellar INK@



U138, 9
. u1s Ag-A3L uis u1Z.6— U24
yL1 0o-D31= 7415245 M 74L5245 74ALS158
24L5175 L Do igly, |2 8O0 .te tefy, ]2 Bee BA14 <] P
2o sgts o ARl SRR ey Tl e
. 4tpri-y13a.1 02 18053 432 3 A3 38
12 3y 3glie 7 03 150 S BO3 a3 15 S _BA3 BA4 1134 aypd-MAZ |
3GbLl 04 14 6 BD4 N4 14 g 6 BA4 BA1Z 3
5y 2gl7 DS 132 7 BD5 As 13 7 BAS 8a3 Sloa  aybiz AL
CLKL 2P 06 12}, ,-[8 BD6 ag 1217 Jle _Bes BA1l 3)7g P Y
E ° ~V
alip o2 D7 11 9 BD? A7 i1 9 Baz BAZ 2]y0  1yb4d MAe
< Rtns o LR e
| 1]
U13A, ! " A8 EN a8 EN
S_cL vzsa ix 1 FU L]
19 L | fALses S 9 i
3 = =
2] RAS 2o .
o1z 74L5245 74L5245
2 uzs
74LS175 _— p1  ayf2008 A 1 arf2--808 24ALS15
13 < [ 3 603 A o3 BA3
o agHS yam b1 4 BDL A P24 Baje T} 2iS 1 1345
ali4 741505 B3 a3 s A 8A9 14 12 mer?
12 4qpry N\ DL 3 BD1 A  ER=CYINN ey v LR
E DSACKe Di2 14loe  welB BDL alz 14 s[5 Bale Y oos 11|38 5 Hes
S G A U D13 13]e  aal7 801 ENE FRTYENN S a3y
o 20— Y3Ceos D14 12}>  ,ile BD1d poLaizl>  Cls mara Y220 =8 2 s
4 20 c A DIS 11 PEIEDT hAL5 11 9 BALS BALE 2128 2
10 19— DSACKL A o o 28 4 has
HMEMSEL 1] I_ A2B_EN A+B EN TIER 1Y
c o viz.s i E‘ 1 Té —15
fa Tl = e I
T
] ute uz1 S
vis.1 74L5245 2415245 =
h_DIE 1 2 BD1S NALE 18 2 Baie
D17 17)0s  Sa[3BDIN al717]or A3 Ba7 ) v2e
D18 16lp o4 BDI® ats 6les  Gl4 BA1s N 74ALS15:
D19 151 S BDIS a18 15| 35 paig Y Baes | 13[,
\pze 1aloc 6 8029 faze 141oc 6_BAzZe Y BAz4 | 14 ayblZ MALL
J3-30——+12U D21 13 nel? 8021 421 13 Ael L BReL Y/ BAz3 | 1elio
- h Al b6
o ool Mol NerEl Vs e Tuh oieoe
J3-5 B8 As B A2 S1n  ayb? tAS
J3-5 A+B EN AsB EN AL EINY
s % 1N AL 2] 0 iybdt_tag
J3-8 = S 3 1
= = S
J3~Bom—-=5Y uie vz s \heo-mat L
74L5245 7415245 1
J3-10 45U h_D24 tefo 12 Bp24 az4 1 ale Bo2d >
- [5 Bass =
ERTS ol Lome LR Lhoe
ARG ER T a7 15100 A3 gag7 Y
028 14]ee  nelb BD2E ha2s 14 A28
D23 13- agl” B8D29 229 13 (oo = AZS
N_D30 iz 8030 &30 12 030
87 A =187 A7—
. , p NURETIEN S QAN EREF EETRNTE SN a31 Y
Figure 3b—U11and U12 implement the bulk of the DRAM sequencer. —
. 6B EN AsB EN
U24-U26 are the address multiplexer for the DRAM. B 5 \—go-g631
\=E00-BD3L

ROCHESTER INST. OF TECHNOLOGY ® TUFTS ®

HARVARD ® PURDUE ® DEYRY INST. OF TECHNOLOGY ®

PENN STATE ©® CORNELL ® CALIFORNIA STATE ®
U.S. NAVAL ACADEMY ¢ MILWAUKEE SCH.

OF ENGR. ® CASE WESTERN RESERVE

MERCER ® AALBORG ® AMARILLOC. ®

APPALACHIAN ¢ MIT ¢ STATEU. ¢
U. OF ARIZONA

If you're an engineering professor or teach qualified technical students, we’d like to give
you and all of your students free subscriptions to Circuit Cellar INK. Contact:

Rose Mansella * Circulation Coordinator  Circuit Cellar INK
4 Park St. » Vernon, CT 06066 ¢ (860) 875-2199 « Fax: (860) 871-0411
rose.mansella @ circuitcellar.com » www.circuitcellar.com

TN = e

Circuit Cellar INK@  Issue 88 September 1997 69



EMBEDDED DOS

'CONTROLLERS AT 8051 PRICES

Jse Your PC Development Tools

NoO More CRAsH & Burn EPROM
Technology

195

Qty 1 Price

Flashlite

DOS Slngle Board Computer

with 512 K FLASH Memory disk drive

v 10 Mhz/8 Mhz CPU ¢ 2 Timers

v 512k bgtes RAM ¢ 4 Interrupt Lines
v 512 k/256 k FLASH ¢ 8 Analog Inputs
v 2 Serial Ports v X-Modem File
v 24 Parallel /O Lines  Transfer

INCLUDES DOS & Utilities
Use Your TurBo C COMPILER OR

QuickBAsic COMPILER
PAvE TiMe, MONEY AND HEADACHES

A/D Converter -

395

|Qty 1 Price

»
v 8 Channels, 12 Bits
v 6 ps. Conversion Time
v Clock/Calendar Option
v Includes Drivers & Apps.

GETYour EMBEDDED CONTROLLER
PROJECT RUNNING FAST!
WITH THESE ACCESSORIES

Relay I/0

Qty 1 Price

10 Amp Relays
Opto-Isolated Inputs

JK micros lystems

Cost Effective Controlfiers for Industry

TO ORDER (510) 2364151
FAX (510)236-2999—email: jkmicro@dsp.com

Visit our WEB site—www.dsp.com/jkmicro
1275 Yuba Ave., San Pablo, CA 94808

#134

v8
v

70 Issue 88 September 1887

Level Source Function
ipl7  “break” button NMI

iplé MFP(15) ISA-bus IRQS
iplé MFP(14)  ISA-bus IRQ10
ipi6 MFP(13)  Timer A (60 Hz)
ipi6 MFP(12) KBD receive
iplé MFP(11) KBD error
iplé MFP(8) Timer B
ipl6 MFP(7) ISA-bus IRQ11
ipi6 MFP(6) ISA-bus IRQ12
iplé MFP(5) Timer C

Level Source Function
ipl6 MFP(4) Timer D
iplé MFP(3) ISA-bus IRQ14
iplé MFP(2) ISA-bus IRQ15
ipl6 MFP(l) KBD data
iplé MFP(0) KBD clock
ipl5 direct ISA-bus IRQ3
ipl4 direct ISA-bus IRQ4
ipl3 direct ISA-bus IRQ5
ipl2 direct ISA-bus IRQB
ipll direct ISA-bus IRQ7

Table 2-These are alf the possible interrupt sources on the MC68030. Many of the interrupts are routed through the
MC68901 MFP, which prioritizes all of i ts interrupt sources (0-15) and uses interrupt priority level 6 fo notify the CPU.

The MFP implements the keyboard
interface by using its internal USART.
The USART has a receive clock input
that enables a Ix baud-rate clock, even
in asynchronous mode.

This feature is perfect for the AT
keyboard interface, since it uses a
clock signal to indicate when the serial
data needs to be sampled. The data
format for the AT keyboard scan codes
is 1 start bit, 8 data bits, even parity,
and 1 stop bit. Figure 2b shows how
the keyboard interfaces to the MFP.

To make the design more interest-
ing and useful for larger projects, 1
added DRAM. A single 72-pin SIMM
module doesn’t take up much real
estate, but since it uses 50-mil staggered
pins, it’s a little harder to prototype
with. The DRAM interface port size is
32 bit and uses a 74LS163 shift register
to sequence the CAS and RAS, which
are presented to the PLD for further
decoding.

I used 74LS150 2: 1 muxes to multi-
plex the address bus. Since the 68030
needs to be able to write byte data to
memory, I implemented a bank decoder
in the PLD to assert the correct combi-
nation of CASx selects and satisfy any
possible data-transfer situation.

Figure 3b shows how the DRAM
subsystem interfaces with the CPU.
Table 3 shows the truth table for the
byte-selection logic implemented by
the PLD.

Of course, you have to refresh all
the rows in the DRAM once every
2 ms. This task is accomplished by
dividing the system clock down to
4 us. That gives one total refresh cycle
in 2.048 ms, which I thought was close
enough.

The 4-ps clock edge triggers a 74LS74
flip-tlop to indicate a pending refresh

Circuit Cellar INK@

request. Once the current CPU cycle
finishes, a separate shift register will
time a CAS before RAS refresh cycle
and present the PLD with an RCAS
signal to indicate that this is a refresh
cycle, while the next CPU is blocked.

Once the refresh cycle is done, the
refresh-request flip-flop is cleared us-
ing an async clear input. It's unlikely
that a refresh request is skipped, since
a CPU cycle and one refresh cycle take
less than 4 us.

I also considered that someday I
might want to add a floating-point
processor to the system, but I didn’t
want to clutter the design. So, I added
a CPU bus instead.

This bus essentially brings all the
CPU pins into a 96-pin DIN connector.
There’s also a signal that inhibits the
onboard decoder and enables the CPU
card to decode address spaces which
shadow the onboard resources.

MOTHERBOARD DESIGN

The wire-wrap version of the mother-
board was done on a special wire-wrap
proto board we developed at [UCS for
chip testing and system-level proto-
typing. This board-the Logic Engine—
contains a parallel port interface that
enables a PC to set and read 128 bits of
170, program timers, and so forth.

For this project, we didn’t use this
interface and build the system as a
stand-alone prototype. I actually created
two wire-wrap prototypes.

The first was a 68020 system that
included a prototype ISA-bus interface
to demonstrate the feasibility of writ-
ing software that could interface with
PC peripherals (e.g., the VGA graphics
card and floppy interface).

The 68020 system was short-lived,
since it only implemented 8-bit devices



72

VAAAY®

W IV ESf B/ W

QUALITY PRODUCTS
RESPONSIBLE SERVICE
RELIABLE DELIVERY

ENHANCED SOLID STATE
DRIVE — $89.00
5 Flavors: 2 or 3 Drives, 2M, 4M,
32M, 2M with Post LEDs
Either Drive Boots, ¥FS included
1/2 Card, XT Height, Customs too

] G

MULTI PORT 1/0 BOARD—
$90.00
4 Serial Ports, 2 Bi-Parallel Ports,
2 Drive IDE, 2 Floppy Interface,
16 Bit Standard, 8 Bit Adaptable,
Low Profile 4.2", Full Cable Set

betemoeses THUIHANN AEIRIOHHIRHEG -~

486 66MHz SINGLE CARD
COMPUTER — $335”
Up to 2.5MegFlash/Sram drive

Compact-XT height '/ card size
Industry Standard PC-l 04 port

L2 cache to 64K—DRAM to 16Meg
Dual IDE/Floppy connectors

All Tempustech VMAX® products are
PC Bus Compatible. Made in the
US.A., 30 Day Money Back Guarantee
*Qty 1, Qty breaks start at 5 pieces.

TEMPUSTECH, INC.
TEL: (800) 634-0701
FAX: (%41) 643-4981
E-Mail: cpusales@tempustech.com
I-Net: www.tempustech.com

Fax for
fast response!

295 Airport Road
Naples, FL 34104

adrl adrQ sizl siz0 cas3 cas?2 caslcas0
0 0 0 0 1 1 1 1
o 1 0 0 0 1 1 1
1 0 0 0 0 0 1 1
1 1 0 0 0 0 0 1
0 0 0 1 1 0 0 0
0o 1 0 1 0 1 0 0
1 0 0 1 0 o 1 0
1 1 0 1 0 00 1
0 0 1 0 1 1 0 0
o 1 1 0 0 1 1 0
1 0 1 0 0 01 1
11 1 0 0 00 1
0 o0 1 1 1 1 1 0
o 1 1 1 0 1 1 1
1 0 1 1 0 0 1 1
1 1 1 1 0 o] 0 1

(R -t

#135
Circuit Cellar INK@

issue 86 September 1997

Table 3—This truth table for the byte-selection circuitry
for the DRAM interface is implemented in the PLD. For
each combination ofaddress location and size request,
the appropriate CAS selects fo the DRAM must be
generafed.

and had no DRAM. After testing some
of my assumptions about the ISA-bus
interface on this system, I proceeded to
design and build a wire-wrap prototype
of a 68030 system.

I documented the design as I went
along and was able to design in steps
that made the design more modular
and kept my confidence high that 1
could get everything to work.

Contrast this approach to designing
the whole system and then building a
wire-wrap prototype only to discover
that many things you assumed would
work didn’t. It's much easier to debug
an incremental design.

Once the design was working and
verified to match the documentation, 1
passed it on for PCB layout. The board
was laid out to ensure that all the
mounting holes, ISA-bus slots, and
power connectors could fit in a stan-
dard baby-AT case.

While this choice enables us to use
ultra-cheap PC cases with power sup-
plies, I think it makes for an unattrac-
tive machine. It looks just like a PC!
This situation has, of course, evoked
many funny situations when an unsus-
pecting user gets a totally foreign boot-
monitor prompt instead of the familiar
Windows look.

After the PCB layout was complete,
we spent a nervous two weeks waiting
for the first samples to come back
from the board house. We distracted
ourselves by working out the logistics
of ordering components to build 20 of
these systems and by putting some
finishing touches on the software.

The first board worked, although it
had a few erratas that we incorporated
in the final layout. To date, the final
layout has only had to have one errata
in three years of service.

HARDWARE WRAPUP

Even though the design is fairly
complex, we ended up with 20 out of
20 working systems. This process
shows that wire-wrap prototype designs
running at 16 MHz are no major chal-
lenge as long as you use well-designed
prototype boards that have a ground
plane.

Next month, I'll talk about the
monitor software and how it boots, as
well as some of the issues involved
with programming ISA-bus peripherals
ina68k. U

Ingo Cyliax is a research engineer in
the Analog VLSI and Robotics Lab
and teaches hardware design in the
computer-science department at Indi-
ana University. He also does software
and hardware development with Deri-
vation Systems, a San Diego-based
formal-synthesis company. You may
reach Ingo at cyliax@EZComm.com.

SOURCES

Schematics and PCB artwork for
this system can be found at <ftp.
cs.indiana.edu/pub/goo/mc68030>.

REFERENCES

L.C. Eggbrecht, Interfacing to the
IBM Personal Computer, SAMS,
Carmel, IN, 1990.

Motorola, MC68030 Enhanced 32-
bit Microprocessor User’s
Manual, Phoenix, AZ, 1990.

Motorola, MC68901 Multi-Function
Peripheral, Phoenix, AZ, 1988.

Motorola, Motorola Memory
Databook, Phoenix, AZ, 1989.

E. Solari, ISA e) EISA: Theory and
Operation, Annabooks, San Diego,
CA, 1992.

416 Very Useful
417 Moderately Useful
418 Not Useful



DEEPARTMENTS
66 MicroSeries

From the Bench

Silicon Update

66 Issue 87 October 1997 Circuit Cellar INK@

MICRO
SERIES

Ingo Cyliax

MC68030 Workstation
The Boot PROM Monitor &

Device Drivers

| Stranded by
3 Motorola’s
L | decision to
discontinue an affordable
MC68000 eval board,

Ingo built a 68k platform
to teach programming in
assembly. After covering
the hardware last month,
he looks at the boot-PROM

monitor and how to build
device drivers. '

ast month, I
described the hard-
ware architecture for a
68030-based workstation
used in our computer-architecture lab
at Indiana University. In this install-
ment, I want to discuss the onboard
monitor software on this machine as
well as some issues that arise when
writing device drivers for I/0 devices
that are onboard or attached to this
system’s ISA bus.

But, let’s start with what the moni-
tor does. 1’11 cover how it initializes all
the I/0 devices and the processor to a
consistent, usable state.

Once this is done, I'll show you how
the monitor implements a simple
command-line-based user interface.
This enables the student to download
and boot code from the network; boot
from a floppy or IDE drive; view and
change memory, I/0, and processor
registers; and debug programs.

In our typical lab configuration,
these machines have a VGA card and
monitor, floppy and IDE disks, an AT
keyboard, two RS-232 serial ports, one
parallel port, and an Ethernet card. The
monitor supports all these devices.

MONITOR

The monitor resides in the system’s
boot PROM and is activated at reset. It
was written entirely from scratch—



mostly in C, with some of the start-up
and exception processing routines in
68k assembly language.

The complete monitor may seem
fairly Spartan since it doesn’t imple-
ment fancy command-line editing,
history functions, or even a program-
ming/scripting language. However, if
you consider that it fits in a single
32-Kb EPROM, you'll realize it gets a
fair amount of bang for the buck.

Let’s look at the monitor’s operation
and features in more detail. At reset,
the 68030 expects to load the system
stack pointer at location 00000000 (hex)
and the initial PC at location 00000004.
Besides these vectors, many exception
vectors reside below 00000400.

The reset vector causes the CPU to
start executing the cold-reset start-up
code. The first thing the start-up code
does is to disable interrupts. While the
interrupts are already off after a real
reset, this task enables any code to use
the reset vector (which is in a known
location) to cause software to give up
control and reset the system.

Once the interrupts are off, the
monitor checks whether it's already
running from DRAM by checking the
actual running address in the PC against
the desired address the monitor was
linked for. If the addresses don’t match,
the monitor copies the desired address
to DRAM (at physical address 80000000
[hex]) and resumes operation there.

Listing I-i de_cmd () tries to read or write a block of data from the IDE hard disk by first seeking the
location and then reading or writing the disk data through the data port.

ide_cmd(un,cmd,hd,cy,se,buf,len)
int un, cmd, hd, cy, se;
short *buf;
int len; {

int i,s,st;

outp(IDE(3),se);
outp(IDE(S),cy>>8);

outp(IDE(6),0xa0 }
(hd & 0xf) );

(un <<4) |

while(!(inp(IDE(7)) & SRDY)):
outp(IDE(7),cmd);
/* do a write */
if(cmd == 0x30)1{

len = len / 2;

i=0;

while(i < Ten){
outpw(IDE(D),*buf++);

if(st & 0x01){

if(st & 0x01)1

return(-1); }
i = st:
if(len)|

len = len / 2;
i = 0;
while(i < Ten){

it
i = i*2: 1)
return(i); }

*puf++ = inpw(IDE(0));

/* busy? */
while(((st=inp(IDE(7)) & (SBSY|SRDY))) != SRDY);
outp(IDE(2),1en/512); /* sec count */
( /* sector */
outp(IDE(4),cy&0xff); /* cylinder low byte */
( /* cylinder high byte */
(

/* secsize, unit, head */
/* wait for drive to become ready */

/* command */

/* wait for drive to accept data */
while(!(inp(IDE(7)) & SDRQ)};

/* wait for completion of write here? *

it )

i=i%2;

if((st = inp(IDE(7))) & SBSY){
while((st =

inp(IDE(7))) & SBSY) ;1
/* an error occured */
printf("ide_cm¢: Error status %x error %x\n",
st,inp(IDE(1)));

return(-1); | }
elsef
if((st = inp(IDE(7))) & SBSY){
while({st =

inpCIDE(7))) & SBSY) ;1
/* an error occured */
printf("ide_cmd:Error status %x error %x\n",st,inp(IDE(1)));

/* is drive ready to send data? */
while(!(inp(IDE(7)) & SDRQ));

The code also changes the base of
the exception vector table to start in
DRAM. There are several reasons for
this.

Since the boot PROM is an 8-bit
device, execution speed is enhanced if
it’s copied and run from 32-bit-wide
DRAM. Also, DRAM makes it easy to
alter the exception-vector table and
patch the monitor code to add support
for new devices and fix bugs if needed.

After the monitor and exception
table is relocated, the assembly-lan-
guage start-up code is done and the C
code is called. If it's the first time into
the monitor code after a real hardware
reset, the monitor initializes all the
needed I/0 devices and prepares itself
to boot from the IDE drive unless the
user enters a character to interrupt the
auto-boot sequence.

If the auto-boot sequence is inter-
rupted in time, the monitor enters a
command-line-based interface so the
user can execute monitor routines to
boot from an alternate device or debug
a program. If the monitor is entered
from either a software-initiated reset
or an exception that isn’t trapped by
another program, the auto-boot se-
quence is bypassed and the command
loop entered directly.

The code also prints out the current
state of the PC and status register and
what exception caused control to be
transferred to the monitor. This sce-
nario occurs when a user program en-
counters an exception (e.g., an address/
bus error or divide-by-zero) or when an
unexpected interrupt occurs.

Let’s look at what it takes to boot
the system from one of the boot devices.
The monitor is supported for booting
from an AT-compatible IDE drive and
floppy drive on the ISA bus. It also
knows how to boot from Ethernet us-
ing one of two possible 8-bit Ethernet
card types (also on the ISA bus).

Booting from a disk device is rela-
tively straightforward. The monitor
reads the first sector from the floppy
or IDE drive to location 80008000
(hex) and extracts the number of
blocks and location on the media to
start reading the boot image.

The format of the boot sector looks
like Table 1. After loading the boot
sector, the monitor continues to read

Circuit Cellar INK@  TIssue 87 October 1997 67




[ 1F0 | Data Register |
1F1 Error Register
1F2 Sector Count Register
1F3 Sector Number Reqister
1F4 Cylinder Register Low
1F5 Cylinder Register High
1F6 Drive/Head Register
| 1F7 | Status/Command _Register |

Figure 1 —To perform a disk /O operation, the sector
location address must be programmed before a com-
mand can be given. The Data register is 16 bits,
whereas the resf of the registers can be accessed via
16- or 8-bitl/O  instructions.

the boot image until all specified blocks
are read.

Once the boot image is in memory,
the monitor does the equivalent of a
subroutine call starting at address
80008000. There, a branch instruction
should cause execution to continue
somewhere in the boot image, depend-
ing on the application.

The Ethernet boot code is similar. It
uses standard Internet protocols to
determine the boot image’s location
and filename on the network and uses
another standard protocol to download
the image to location 80008000.

Once loaded, it executes a subroutine
call to the start of the boot image. This
way, the same boot image can be loaded
from floppy/IDE and Ethernet without
changes to the image. In Part 3, I'll
discuss the protocols used in loading
the boot image over the Ethernet.

Once control is given to the boot
image (usually some kind of operating
system), you only get back to the moni-
tor if an unexpected exception occurs
that the OS can’t handle or if the OS
gives control back to the monitor.

When students are learning to write
code for this system, we need to load
code images and allow debugging from
the monitor code. The student normally
assembles and compiles code on a
workstation and manages to get the

3F2 Operations Control Register
3F4 Master Status Register
3F5 Data Register

3F7 Data-Rate Register

Figure 2—The Operations register resets the controller
and spindle-motor controf, while the Data-Rate register
programs the data rate and density desired. Most of the
control is accomplished by sending commands to and

reading slatus packets from the Data register.

68 Issue 87 October 1997 Circuit Cellar INK@

code image into system memory for
debugging. (More on how the program
image gets there next time.)

The monitor’s debugging facilities
are Spartan so the student is exposed
to a different environment than they’re
used to. Since the lab’s purpose is to
teach computer-science students com-
puter architecture, we want them to
see low-level machine constructs. We
hope they learn how abstract program-
ming constructs in C/C++ programs
are implemented.

They’d also never experience the joy
of doing a manual stack trace to figure
out where their program bombed.
Remember, this lab is as close as most
computer-science students get to pro-
gramming real hardware these days.

After they load a code segment into
memory, they can use the monitor’s
go command to start executing at a
specified address. They may also set a
breakpoint anywhere in their code.

When the processor encounters a
breakpoint, which is implemented with
a software interrupt (trap) instruction,
an exception control jumps back to the
monitor where the context of the run-
ning code is saved. The user can then
examine and modify registers as well as
memory and continue executing their
code. The user can also trace their
program’s execution, for which the
68030 has a special hardware facility.

Another useful feature of the moni-
tor PROM is the ability to save more
than context. This feature enables the
student to save the context of an OS, if
active, and the context of the program
being debugged. There are two default
contexts for this purpose and a shortcut
command that restores the OS context
and continues execution.

DEVICE DRIVERS

Of course, the monitor also has to
implement device drivers for several
devices that are present. I already dis-
cussed the boot sequence, so let’s look
at some of the low-level routines used
to implement the device driver for the
boot devices.

The IDE controller contained on the
disk drive uses a parallel port on the
IDE interface card to connect to the ISA
bus. Last month, I talked about how
the ISA-bus interface is implemented.

To understand how the software
works, you only need to know that the
ISA bus is divided into four different
memory areas depending on what type
of ISA-bus bus cycle is required. These
are 8- and 16-bit memory space access
and 8- and 16-bit I/0 access.

The IDE interface uses 8-bit I/0
accesses to communicate with its
registers. The register map and I/0
locations for the first IDE drive can be
seen in Figure 1. The data is transferred
through a single 16-bit I/0 register
using programmed /0.

Listing 1 starts the sequence of steps
necessary for reading from and writing
to the IDE disk. The routine ide cmd
sets up the IDE controller with the
desired disk address by programming
the appropriate register.

When reading, initiate the command
and poll the status register until the disk

Address Description

000 (hex) Branch to start

004 (hex) Starting block number of
boot image

008 (hex) Number of blocks in
boot image

00c—1ff  Not used by monitor

Table 1 --The booi sector contains information for the
boot loader about where to find the boot image and how
long if is.

drive is idle. Then, check the status
register for any errors. If none are found,
read the data from the data register.

For writing, the data should be trans-
ferred through the data register before
issuing the wr it e. The data is simply
read or written to the data register
until the required amount is transferred.

The floppy driver is a bit more com-
plicated since some timing issues are
involved. The floppy driver is another
reason why we want to execute from
32-bit memory and why the monitor
was moved to DRAM.

It would have been possible to write
a floppy driver that ran from 8-bit
memory. But, it would have required
extensive assembly-language program-
ming to make it work fast enough
during the data-transfer phase.

The data-transfer phase involves the
most critical timing. There’s only a
single register to buffer the data to and
from the floppy disk.




If we're too slow in reading the
data, the data coming from the floppy
disk overruns the data register, causing
an error. If we're too slow in writing
the data to the floppy, the data register
is empty when data needs to be serial-
ized to the floppy disk, resulting in a
data underrun. In a real PC architecture,
the DMA offloads the CPU from these
timing requirements.

Motor control brings up another
complication on the floppy controller.
The floppy drive has a motor to drive

the spindle. However, if it runs all the
time, the media can become worn out.

So, the motor needs to be started
before any floppy operation can proceed.
It also needs to be stopped sometime
after the last floppy operation is done.

Other than that, the floppy works
mostly like the IDE drive. The driver
calculates the sector number, cylinder,
and head number from the block num-
ber requested, sets these parameters
into the appropriate register, and re-
quests a seek operation.

required to transfer the data.

Listing 2-f 70ppy_read() seeks the specified location on the disk and then transfers the data from
the floppy data port to memory. Since the 68030 motherboard doesn't implement DMA, programmed /O is

floppy_read(drv,block,buf,len)
int drv;
unsigned block;
register unsigned char *buf;
int len; |{
int sec;
int trk;
int hd;
register int n;
unsigned char resp[7];
unsigned short x;
register unsigned char i;
floppy_seek(drv,block);
trk block / 18;
sec = (block % 9);
hd = (block / 9) % 2:

n = len;
fdc_out(0x66);
fdc_out(drv|hd<<2);
fdc_out(trk);
fdc_out(hd);

fdc_out(Ox1b);  /* gap */

if((1 & Oxe0) == 0Oxe0){
*puf = inp(FDC(5));
buf ++;
n--; } /* oops,
break; }
for(x=0;x<7;x++){

fdc_in(&resp(x]); }
if((respl0] & Oxc0) || n)i

got0 out;
puthex2(i);
putchar(’ ");
for(x=0;x<7;x++)
puthex2(resp{x]);
putchar(' ');
puthex4(n);
putchar('\n');
return(-1); 1}
out:
return(len nj); |}

len = (len > ((9-sec)*512))7(9-sec)*512:1en;

/* read command MFM,SK */

/* drive & head select */
/* cylinder */

/* head address */
fdc_out(sec+l); /* sector address */
fdc_out(2); /* sector size 512 */
fdc_out(9); /* end of track */

fdc_out(0xff); /* data length,

while(n){ /* anything happening? */
while(!((i = 1inp(FDC(4))) & 0x80)); /* still executing */

not executing,
else if((i & Oxe0) == 0xc0)

while((inp(FDC(4)) & 0xe0) != 0xc0);

if(lIn && (respl(0] & 0xf8) == 0x40 &&
(resp[1] == 0x10|| resp[1] == 0x80) && resp[2] == 0x00)

only if sector size == 0 */

mist be response data */

Tight Budget

'51 Emulation

8051 Family Emulator is
truly Low Cost!

The DrylCE Plus is a modular emulator
designed to get maximum flexibility
and functionality for your hard earned
dollar.

805family
processor pods that are low in price.
Features include: Execute to
breakpoint, Line-by-Line Assembiler,
Disassembler, SFR access, Fill, Set
and Dump Internal or External -RAM
and Code, Dump Registers, and
more. The DrylCE Plus base unit is
priced at a meager $299, and most
pods run only an additional $149.
Pods are available to support the
8031/2.8751/2, 80C154, 80C451.
80CH35, 80CH37, 80Cb50,
80C552/62, 80C652,80C86 1,
80C320 and more. Interface through
your serial port and a comm program.
Call for a brochure or use INTERNET.
info@hte.com o r

We're  at

Our $149 DrylCE model 1s what
you're looking for. Not an evaluation
board - much more powerful. Same
features as the DrylCEPlus, but limited
to just the 803 1/32 processor.

So, if you'’re still doing the UV
Waltz (Burn-2-3, Erase-2-3). or
debugging through the limited window
ROM emulators give, eall us now for
reliefl Our customers say our products
are still the best Performance/Price
emulators available!

Look into our Single Board
) Computer solutions, too!
HiToch Equipment Corp.
= 9672 Via Excelencia
= San Diege, CA 92126
= [Fax: {619) 530-1458]
Since 1983

—— (619) 566-1 892 —

@

Internet e-mail: info@hte.com
World Wide Web: www.hte.com

Circuit Cellar INK®

#136
Issue 87 October 1997 69



Once completed, the data can be read
or written to the data register. But, you
need to make sure the floppy is ready
by read-testing the data-request status
bit. Listing 2 shows the code for reading
one sector from the floppy, while Fig-
ure 2 shows the 1/0 register layout.

ETHERNET CONTROLLERS

Now that you know how to control
the floppy and IDE drive, what about
an Ethernet device? Ethernet controllers
are a bit more complex even at the
hardware level. Let’'s examine the code
that sends and receives a packet on one
of the controllers.

Ethernet runs at 10 Mbps, which
turns out to be a little better than
1 MBps. Since many Ethernet packets
are not for this node, it's wasteful to
get the processor to read every packet.
It would keep an 8-bit ISA-bus system
100% utilized whenever there’s traffic.

To reduce the I/0 requirements,
Ethernet cards employ some kind of
buffer to store at least one received
packet. If this packet isn’'t destined for
this station, the write point to the
packet memory is simply reset.

Once a packet is received, the Ether-
net card signals the processor with an
interrupt request or a bit in the status
register that it’s done. Listing 3 shows
the code for receiving a Ethernet packet
from an Ethernet card.

Sending packets is easy. The CPU
copies the packet to be transmitted to
the card’s transmit buffer and tells it
to start. If the Ethernet card transmits
the buffer, it simply indicates that it’s
done and interrupts.

Transmitting the packet can take a
long time. The card has to find an idle
period on the Ethernet and then try to
transmit. If another station tries to
transmit, a collision occurs and both
cards retry after a randomized timeout.

These actions are transparent to the
software, but you.need to be aware of
them, since it may take a while before
the transmit request completes. Check
out the transmit routine in Listing 4.

KEYBOARD

In Part 1, I talked about the physical
interface of the keyboard, which in-
volved how the data and clock interface
to the USART in the 68901 MFP chip.

70 Issue 87 October 1997 Circuit Cellar INK@

Listing 3-we8003 read () pulls a recei ved Ethernet frame fom the Ethemet card’s infernal memory. Since
frames are stored in a circular queue on the card, puff the oldest frame and advance the tail pointer for another.

we8003read(ifp,buf,count,timer)
struct ifconfig *ifp;
unsigned char *buf;
int count:
int *timer; {
int len;
unsigned long x;
struct we8003 *we =
unsigned char *mem;
int head,tail,i,stat,residq;
fidefine Ttail (*(unsigned char *)(ifp->ifc_addr2 + Ox5ff))
len = 0:
x = 1000* *timer;
mem = (unsigned char *)ifp->ifc_addr2;
while(x && !len){
while(!((stat = we->we_pO_isr) & 0x05)
X==3
if(!x) break:
if(stat & 0x04){
i = we->we nic_reg(13];
i = we->we_nic_reg[14];
i = we->we nic_reg[15];!}
tail = we->we_p0_bnry; /* first packet */
we->we_cmd = 0x42: /* ps=1, running */
head = we->we_pl_curr; /* next free */
we->we_cmd = 0x02: /* ps=0, running */
/* printf("isr %x hd %Zx tl %x 1t %Zx\n",stat,head,tail,Ttail); */
if(1tail)
tail = ltail;
while(tail !'= head){
i =tail8;
len = mem[i+3]<<8;
len |[= mem[i+2];

(struct we8003 *)ifp->ifc_addr;

&& x)

tail = mem[i+1];
/*printf("  stat %x nxt %x lem Zx\n", mem[i],mem[i+1],len); */
len -= 4; /* lop off CRC */

len = len > count ? count : len;
/* need to check for wrap--ped buffers */
resid = WE_MEMSIZ-i-4;
if(resid < len){
bcopy(&mem[i+4],buf,resid);
bcopy (&mem[0x600],8buflresid]l,len-resid); |}

el se
bcopy(&mem{i+4],buf,len); }
ltail = tail:
tail--:
if(tail < 6)
tail = OxIf;

we->we_p0Q_bnry = tail:
we->we _p0_isr = Oxff; }
return(len); }

A ——

Listing 4—Compared to reading Ethernet frames, sending them is siraightforward. Just copy it fo the Ethernet
caidsinternal memory, and fef it to go. Sincefhe monitor usespolling, wal here fo make sure if was sent OK.

we8003write(ifp,buf,count)

struct ifconfig *ifp;

unsigned char *buf;

int count; {
struct we8003 *we = (struct we8003 *)ifp->ifc_addr;
unsigned char *mem = (unsigned char *)ifp->ifc_addr?;
count = count > 60 ? count : 60;
bcopy (buf,mem, count);
we->we_p0_tbcrl = count & Oxff;
we->we_p0_thcrl = count >> 8;
we->we_cmd = 0x06; /* transmi t,
while(!(we->we_pO_isr & 0x0a));

we->we_pO_isr = 0x0a;

return(count); }

running */




On the software side, the interface
looks like a standard USART interface.
When a byte arrives from the key-
board, the receive-buffer fill bit gets set
in the status register and an interrupt is

generated when enabled. Reading the
received byte from the data register
resets the receive-buffer full condition
and readies the USART for another byte.
It seems simple, but the received byte
is only the scan code from the keyboard
or, worse, one byte of a multiple-byte
message. What the monitor really needs
is an ASCII character that responds to
the keycap legend on the keyboard.
The keyboard driver achieves this by
looking up the scan code-one for each
key-in a character table. The driver
also tracks the state of the keyboard
shift and control keys, which modify
the ASCII code. Listing 5 explains all.

VGA DRIVER

Of course, I saved the hardest until
last-the VGA driver. It’s hard because
each VGA chip and card has a different
low-level configuration register set.

In the PC world, this situation is
handled by calling the appropriate ini-
tialization and mode change routines
from the BIOS on the card itself. The
code is usually proprietary, and I'd need
an Intel instruction emulator for my
system to execute the routines.

I ended up writing a driver for only a
limited number of possible VGA chip-
sets, including the Paradise and Western
Digital 8-bit VGA chipsets for which I
already had extensive datasheets. Other
chips/cards may also work if they
behave like a Western Digital chip.

The monitor only needs a character-
based interface, so I initialize the VGA
chip to its CGA mode, which emulates
the 6845-based CGA card. The moni-
tor then has a character-based frame
buffer with 8 KB of video RAM. To
speed up scrolling, the monitor’s char-
acter-output routine uses the extra
display memory to page the display.

UNTIL NEXT MONTH...

I hope I've given you an idea of how
involved even a simple debugging
monitor can become-without even
trying.

Next month, T'll discuss the soft-
ware-development environment the

72 issue 87 October 1997  Gircuit Cellar INK®

Listing 5—The keyboard routine pulls bytes from the USART inthe MC68901 (MFF). These bytes are the
scan codes from the keyboard and need to be transiated info ASCII codes using a look-up fable (ie.,
codetab{ J). The receive routine a/so tracks the state of the shift’capslock and control keys.

kbd_getc() {
unsigned char c;
while(!(c=kbd_stat())) :
return(c); }
kbd_stat() {
unsigned char *port = KBD:
unsigned char x,ox;

static int brk=0;
if (! (port[0x15] & 0x80))
return(0);
x = port[0x171];
if(x == SC-BREAX) {
brk = 1:
return(0); }
if(x > 0x7f){
brk = 0;
return(0); }
if(brk){
brk = 0;
ox = codetab[x].code;
switch(ox){
case CC_LSHFT
case CC_RSHFT: shft = O:
case CC_CTRL: ctrl = 0;
defaul t: break; }
return(0); }
ox = codetab[x].code;
switch(ox){
case CC_LSHFT:
case CC_RSHFT:
case CC_CTRL:
case CC-CAPS:
defaul t: if{ctrl)

ctrl =
caps =

if(shft]}

caps)

return(0); }

extern struct codetab codetabl];

break;
break:

shft = 1; break;
1; break;
caps?0:1; break;

return(codetabl[x].cchar);

return(codetab[x].schar);
return(codetab[x].uchar); 1}

students and 1use to write software.
I'll also tell you about some of the
things we’'ve accomplished with this
system. a

Ingo Cyliax is a research engineer in
the Analog VLSI and Robotics Lab
and teaches hardware design in the
computer-science department at Indi-
ana University. He also does software
and hardware development with Deri-
vation Systems, a San Diego-based
formal-synthesis company. You may
reach Ingo at cyliax@EZComm.com.

REFERENCES

Motorola, Programiner’s Reference
Manual, Motorola Literature Dis-
tribution, Phoenix AZ, 1992.

Western Digital, 1992 Devices, Sys-
tern Logic, Imaging, Storage, West-
ern Digital Corp., Irvine CA, 1992.

SOFTWARE

Complete source code for the moni-
tor can be found at <ftp.cs.indiana.
edu/pub/goo/mc68030>.

SOURCE

MCo68xxx

Motorola

MCU Information Line
P.O. Box 13026

Austin, TX 78711-3026
(512) 328-2268

Fax: (512) 891-4465
freeware.aus.sps.mot.com

425 Very Useful
426 Moderately Useful
427 Not Useful




DEPARTMENTS  MC68030 MICRO
66 MicroSeries WorkStatiO n SERIES

Ingo Cyliax

From the Bench

Cross-Development Environment
and Downloading

Silicon Update

tauniversity,
it’s sometimes
easier to justify spend-
ing money on hardware

fr— : - : :
3 § Ingo fmlshes than software. And besides, people in

computer-science departments tend to
h|S three_part pride themselves in their ability to roll

‘ 8 their own.

! i But, I didn’t fancy spending the next
bmmsermmed - SEI1E5 ON five years writing and supporting yet
pu”mg together an another C compiler. Instead, I opted to

look for freely available tools on the

affordable 68000 Net.

Several C compilers and 68000
development board The assemblers are out there, so in this

article, I discuss some of the packages I

ﬂnal Step_software___ls used. Of course, I still had plenty to do

to set up a suitable environment, so I

wasn'’t at all deprived of the experience
based on tools freely o eoll my o
i In this final installment of the
ava”able on the lnternet MC68030 series, I start out with a look
He can even boot the at some software-development tools

and how network booting works. I also
discuss some applications that were
board Over the netwqu' done on the MC68030 system de-
scribed in Parts 1 and 2. One of the
tools is a network application that
permits students to log in to a Unix
machine to edit and compile programs

and then download them for execution

and debugging.

COMPILERS AND ASSEMBLERS
The MC68030 comes from a long
line of 68000 chips that was first intro-
duced about 17 years ago. Naturally, a

large collection of software has accu-

66 Issue 88 November 1997  Circuit Cellar INK@



mulated over the years. There are
many assemblers, and almost all pro-
gramming languages have been imple-
mented on the 68000.

Originally, the computer-science
faculty at Indiana University intended
for students to program this system in
assembly language only. For this, 1
chose asm68, which was written by
Paul McKee.

This assembler is a stand-alone
system that takes Motorola-format
assembly-language files and generates
a Motorola S-record hex file. It also
generates a traditional assembly listing
and a symbol table file.

asm68 comes in source-code form
and is fairly easy to compile for other
systems, since it doesn’t require many
services from the OS. I've built this
assembler under Minix and Unix, and

students also have built it under DOS
on their PCs at home. Being able to
run it under Unix lets students edit
their source files in the familiar pro-
gramming environment of our net-
work of Sun workstations.

While asm68 is very compact and
enables the students to explore archi-
tectural features of the 68030 system
in lab, it doesn’t allow multimodule
programs.

Multimodule programs are when
the student can use modules developed
in an earlier lab (e.g., their own key-
board driver) and link them into a
more sophisticated program. With
asm68, the student has to cut and
paste everything into one monolithic
file and assemble it.

Besides the limitation of single-file
modules, the instructors thought stu-

Listing I--This BOOTP fable resides on the server. If contains the mapping between the Ethemet and
Infernet addresses  as well asthe name of the boot image to download.

{f Legend:

#f hd — home directory

# bf — bootfile

# cs — cookie servers

# ds — domain name servers
it gw ~ gateways

# ha — hardware address

# ht — hardware type

#im — impress servers

## ip — host IP address
#1g — log servers

ff 1p — LPR servers

# ns —IEN-116 name servers

# sm — subnet mask
# to — time offset (seconds)

##f ts — time servers

i

# first field — hostname (should be full domain name)

## rl — resource location protocol servers

i} tc — template host (points to similar host entry)

# Be careful about incl uding backslashes where they're needed. Weird
# things can happen when a backslash is omitted where one is intended

default:sm=255.255.255.0:hd=/tftpboot:bf=null:\
:ds=0.0.0.0:ns=0.0.0.0:ts=0.0.0.0:t0o=18000:

rmc:tc=default:ip=198.88.16.3:ht=ethernet:ha=0000C00340810:bf=net030
reset:te=default:1p=198.88.16.4:ht=ethernet:ha=0000C022DC10:bf=net030
rw:tc=default:ip=198.88.16.5:ht=ethernet:ha=000000945D14:bf=net030
ocs:te=default:ip=198.88.16.6:ht=ethernet:ha=02608C754292:bf=net030
ipl2:tc=default:ip=198.88.16.7:ht=ethernet:ha=0000C0FE6214:bf=net030
ipl0:tc=default:ip=198.88.16.9:ht=ethernet:ha=0000C0138314:bf=net030
ipend:tc=default:ip=198.88.16.10:ht=ethernet:ha=0000CODEE710:bf=net03
halt:tc=default:1p=198.88.16.11:ht=ethernet:ha=0000C0CE5016:bf=net030
fclite=default:1p=198.88.16.13:ht=ethernet:ha=0000C0ACIATI4:bf=net030
ecs:te=default:ip=198.88.16.15:ht=ethernet:ha=0000C0806514:bf=net030
ds:tc=default:ip=198.88.16.18:ht=ethernet:ha=0000C0E15E14:bf=net030
sizl:tc=default:ip=198.88.16.1:ht=ethernet:ha=02608C172716:bf=net030
$iz0:tc=default:ip=198.88.16.2:ht=ethernet:ha=02608C751977 :bf=net030
ipll:tc=defauit:i1p=198.88.16.8:ht=ethernet:ha=02608C754301:bf=net030
#fc2:tc=default:ip=198.88.16.12:ht=ethernet:ha=02608C754301:bf=net030
feO:te=default:1p=198.88.16.14:ht=ethernet:ha=02608C285527 :bf=net030

(ircuit Cellar INKe

dents would benefit from writing some
of the high-level functionality in C,
while maintaining exposure to the
hardware interface through assembly-
language modules. Once the low-level
modules were written, the students
would have more flexibility in writing
more complex programs.

By mixing C and assembly lan-
guage, students gain some insight in
how high-level language constructs are
implemented on a machine like the
MC68030.

GNU TO THE RESCUE

Luckily, since I was already using
the GNU-C environment to develop
the monitor for this system and other
applications, this was a no brainer. 1
could use the same development envi-
ronment being used to develop the
firmware for the system in the stu-
dents’ labs.

Well, that was easier said than
done. Let’s first take a look at GNU-C
(the compiler) and GNU-as (the assem-
bler) to write software for the stand-
alone software and operating system.

The GNU-C compiler has been
around for quite some time. It was
originally written by Richard Stahl-
man of the free-software foundation
(FSF). In fact GNU, which stands for
“GNU is Not Unix,” is a whole tool
suite of utilities that the FSF develops
and gives away free.

Other popular utilities besides
GNU-C are Emacs and Ghostscript.
Due to the open philosophy, many
people and organizations contribute to
these tools by porting them to new
environments, adding features and
functionality, as well as fixing bugs.

The current GNU-C supports too
many architectures to list here. It can
be used as a system compiler for a
particular architecture/operating sys-
tem and, in some cases, is even better
than the vendor-supplied compiler.

For example, Linux and FreeBSD,
both freely available Unix-like operat-
ing systems, use GNU-C as the system
compiler. Also, many software pack-
ages can compile with GNU-C, which
makes it sort of a standard C dialect
across many platforms.

One feature in particular that’s not
as well known to GNU-C users also

Issue 88 November 1997 617



makes it a good tool for embed-
ded-systems programming. It
enables GNU-C to be built as a
cross-compiler and -assembler for
many architectures.

I use GNU-C mostly as a
cross-compiler for the 68000 and
ColdFire, Motorola’s new archi-
tecture (see Tom Cantrell’s
“Motorola Lights ColdFire,” INK
77), on Sun workstations. How-
ever, the 68000 cross-compiler
can be built for almost any OS.

As a C compiler, it behaves as
you’d expect, compiling old-style
C as well as ANSI C into an
object module. It can also com-
pile C++ and Objective C and
even provides a pretty complete
run-time support for the 68000
architecture (e.g., floating-point-
math emulation libraries). GNU-
C also has many optimization
switches and can optimize code
for almost all the 68000 variants.

Ethernet Packet Header
IP/UDP Packet Header
+o | Opcode Hardware Hardware Gateway
Address type  Address len Hops
+4 Transaction ID
+8 Seconds Unused
312 Client Internet Address
+16 “Your” Internet Address
+20 Server Internet Address
124 Gateway Internet Address
+28 Client Hardware Address
+44 Server Hostname
+108 Filename
+236) Vendor Area

work as a 68000 assembler, ac-
cepting both Motorola and MIT
syntaxes-the two prevailing
assembler syntaxes for the 68000
family. It can be configured to
generate different object file
formats (e.g., COFF), which are
all supported by the GNU linker.

There is also a source-level
debugger which has remote de-
bugging capability. So at this
point, I can compile C files, as-
semble 68000 assembly-language
modules, and link them all to-
gether into a program on my
Unix workstation. Nice, but how
do I get it into the 68030 system?

There are several options. |
can generate a Motorola S-record
hex file and download it over one
of the serial ports on the 68030
system. But, this method takes a
long time for any program bigger
than a few kilobytes.

I can also extract an image of

GNU-C is quite amazing, but
the assembler is interesting, too.
GNU-as can be configured to

Figure 1 -The clienf broadcasts a BOOTP request(opcode =1) on
the Ethernet The serverthen sends areply (opcode =2) to the client
with a/the information the clieni needs to boot a file from a server.

RS-485 NOW!

Deploy a rugged, proven Cimetrics RS-485
solution in just days. Software, full documentation,
development tools. All backed by outstanding

service and support from Cimetrics.

Comprehensive Microcontrolle
Master & Slave Support

PC (DOS/Win/NT) 68HCO5

8051 68HC11
8096 68HC16
80C196 68302
80C186EB 68332

68333

68 Issue 88 November 1997

PIC16C74
PIC17C42
H8/300H
TMS370 =
: mmunication
Z180 L :

& Medical .Equipment

. Laboratory Data
Acquisition

55 Temple Place . Boston, MA 02111-1300
Tel; 617-350-7550 « Fax: 617-350-7552

Wehbsite: www.cimetrics.com

#135

Circuit Cellar INK@

the program and its data and
copy it to a floppy that can be
used to boot. This option is pret-
ty nice, but it requires a floppy drive
on the workstation that can write
floppy disks in “raw” format.

One of the fastest and most conve-
nient methods is network booting. In
Part 2, 1 wrote about the features of the
monitor on my 68030 system and its
ability to boot from the network.
Here’s how it’s done.

NETWORK BOOTING

Without getting too in-depth about
Ethernet, let me describe what goes
on. Last month, I described the packet-
level driver needed to send and receive
packets to and from Ethernet.

Each packet sent on the net needs
to have a destination address, which in
the case of Ethernet, is sometimes
called the hardware address. The hard-
ware address is a serial number that’s
unique for each Ethernet card.

Since hardware addresses are as-
signed by the manufacturer, they’'re
not so useful when it comes to sending
a packet to another machine, unless it
happens to be on the same network
segment. The hardware address has no
information about how to route pack-
ets between network segments.




$200 4A
C

Compiler?

You heard right. A quality C
compiler designed for the 8051
microcontroller family, just $200,
including the Intel compatible
assembler and linker. A great
companion to our fine Single
Board Computers, like those
below. CALL NOW!

80C552 a '5 1 Compatible Micro
40 Bits of Digital I/0

8 Channels of 10 Bit A/D

3 Serial Ports {RS-232 or 422/485)
2 Pulse Width Modulation Outputs
6 Capture/Compare Inputs

1 Real Time Clock

64K bytes Static RAM

1+ UVPROM Socket

512 bytes of Serial EEPROM

1 Watchdog

1 Power Fail Interrupt

1 On-Board Power Regulation

Priced at just $299 in single
quantities. Call about our 552SBC
C Development Kit, just $448.

99 MHz 8051!

QOur popular 8031SBC can now be
shipped with Dallas  Semi's
hyperactive DS80C320, an 8051
on steroids. Averaging 3x faster
than the standard 51, your project
can really scream! Call or email
for pricing and brochures
today!

Other versions of the 8031SBC hove processors
with onhip capture registers, EEPROM, IIC, A/D
and more. Call or email for a lst!

8031 SBC as low as $49

Call for your custom product
needs. Quick Response.
ﬁ San Diege, CA 92126

[Fax: {619) 330-1458]

Since 1983

- (619) 566-1892 —

mcali =

Internet e-mail: info@hte.com
World Wide Web: www.hte.com

HITech Equipment Corp.
9672 Via Exceloncla

Ethernet Packet Header

IP/UDP Packet Header

*o Opcode Data

+4 More Data

#137

70 Issue 88 November 1997

Figure 2—The client sends a read request packet
(opcode = 1), in which ihe filename is specified in the
data. After the server responds with an acknowledge
(opcode = 4), the client asks for data blocks (opcode = 2).

On the Internet, routing is done
with the Internet address. An Internet
address is composed of two parts-a
network number and a host number.
I’'m not going to discuss routing issues
any further here, so let’s just say that
Internet addresses are assigned by
network administrators to make the
routing between hosts possible.

But, how does a machine figure out
the hardware address of a host it wants
to send a packet to? And furthermore,
how does the machine discover its
own Internet address?

I'll answer the second question
first. The machine already knows its
own hardware address.

The monitor uses two protocols to
do this. The boot protocol (BOOTP) is
used to discover the Internet numbers
of the machine and server as well as
the filename of the boot image to load.
Figure 1 depicts a BOOTP packet.

The BOOTP protocol is simple. The
monitor fills out a BOOTP request
packet and uses the packet driver to
transmit it. A special broadcast ad-
dress ensures that all machines on the
segment can see this packet,

and a filename. These are then sent
back to the BOOTP client that origi-
nally broadcasted the request. Listing 1
shows the BOOTP table for our lab.

The client receives the packet and
extracts its Internet address, the Inter-
net address of the server, and the file-
name to download for the boot image.
The monitor then uses the trivial file
transfer protocol (tftp) to read the file
from the boot server.

To discover the server’s hardware
address, the monitor broadcasts an
address resolution protocol (ArP) re-
quest packet. This packet basically
asks, “Hey! Who out there has Internet
address xx.xx.xx.xx?"

All hosts on the local segment can
hear this packet. If their Internet ad-
dress matches the one requested, they
respond with a packet giving the hard-
ware address. Figure 2 illustrates a tftp
packet, and Figure 3 gives you a look
at the ARP-packet format.

The boot monitor can now contact
the server using its hardware and Inter-
net addresses and download the re-
quested file via tftp. Our BOOTP and
tftp servers are usually the same ma-
chine (i.e., a Sun workstation).

The tftp protocol is fairly simple.
The client requests a certain file and
downloads it a packet at time. Each
packet has a sequence number, and it
is resent if an acknowledge isn’t re-
ceived within a timeout interval.

This network-booting scheme has
been around for a while, and Unix
workstations from many vendors have
the appropriate BOOTP and tftn server
programs-as part of their normal soft-
ware distribution.

since it has no idea which
machines are present on the
local Ethernet segment.

A BOOTP server host has a
table that maps the hardware
address from which the packet

came into an Internet address +0
+4
+8

Figure 3—When a host wanis (o find the +12

hardware address for another host, it

broadcasts a request packet (opcode = 1). +16

The target host responds by filling in ifs +20

hardware address and sending if back as a 04
+

response (opcode = 2). The protocol address
is the Internet address.

Ethernet Packet Header

IP/UDP Packet Header

Hardware Address Format Protocol Address Format

Hardware Address | Protocol Address Len Opcode

Sender Hardware Address

Sender Hardware Address Cont.|Sender Protocol Address

Send Protocol Address Cont. | Target Hardware Address

Target Hardware Address Cont.

Target Protocol Address

Circuit Cellar INK®



Even though this boot method is
fairly popular and reliable, there’s one
problem that makes it unsuitable for
downloading students’ programs in the
lab. There’s no privacy. Since the boot
client has no way to authenticate itself
except by its hardware address, the
system must have provisions for stu-
dents to only be able to download their
own programs.

Furthermore, tftp has no authenti-
cation method, so it essentially acts as
a public-access server. Also, the boot
monitor has no way for students to log
in remotely to edit and compile pro-
grams. Something is clearly missing.

Here's where the network monitor
comes in. It enables the student to log
in to their Unix account to edit, com-
pile, and download their code in a
secure manner over the network.

The network monitor is based on
the ka9q network OS. This software,
originally written by Phil Karn, is used
by many amateur radio operators to
communicate using packet radio. It
implements a TCP/IP protocol stack
with several clients like telnet and ftp.

I adapted this program to run on my
MC68030 system by stripping out
unneeded features and interfacing it to
some of the drivers I've written. The
students boot the network monitor
through the network using the BOOTP
and tftp boot process. Once it’s run-
ning, they can telnet to their Unix
account anywhere on campus.

Once they're ready to debug, they
can download the image of their pro-
gram into the 32-Kb SRAM, which is
guaranteed to be available on the
68030 system, by using the normal
Internet ftp protocol. ftp lets the stu-
dent log in to their own account and
download only their files.

Once their program is downloaded
into SRAM, they can interrupt out of
the network monitor via a front-panel
push button, which sends an NMI, and
enter the boot-PROM-based debugging
monitor. The student can also resume
the network monitor, assuming their
code didn’t disrupt the saved context
of the network monitor.

CLASSWORK
When students take the computer-
architecture lab, they’ve generally only

72 Issue 88 November 1997

been exposed to an introductory C
programming course. So, they have
quite a lot to learn.

They start with the basics of 68000
assembly language and architecture by
doing exercises in which they fill in
missing code segments or explain the
state certain registers are in after ex-
ecuting instructions. The first lab
exercise consists of logging in to their
account and assembling a small ex-
ample which they then download into
the machine using the network.

Once they master a subset of the
68000 assembly language, they quickly
take off and start coding more complex
programs. One of the first really hard
labs is the interrupt lab, in which they
have to write an interrupt-driven key-
board driver based on a polled key-
board driver from an earlier lab.

They then also learn to interface C
modules to their assembly-language
modules which implement the inter-
rupt service routine. The labs’ com-
plexity increases until they culminate
into the final lab. The final lab con-
sists of taking various interrupt-based
I/0 drivers and timer routines and
implementing a game (e.g., Tetris or
Missile Command).

FUTURE DIRECTIONS

One of the things I'd like to do with
this system is create a more integrated
debugging environment. I might do
that by implementing some kind of
network-based debugging interface to
the 68030 and integrating it with
GNU's source-level debugger. Another
possibility is to redesign the 68030
system using a newer processor tech-
nology that implements a hardware
debugging port. Some interesting pro-
cessors include Motorola’s ColdFire
and PowerPC.

This article concludes my series on
the 68030 system I built for our com-
puter-architecture lab. I hope that I've
fueled some interest in the develop-
ment of open architectures and struc-
tures that are suitable for academics
and others as well. [&]

Ingo Cyliax is a research engineer in
the Analog VLSI and Robotics Lab
and teaches hardware design in the
computer-science department at Indi-

Circuit Cellar INK@

ana University. He also does software
and hardware development with Deri-
vation Systems, a San Diego-based
formal-synthesis company. You may
reach Ingo at cyliax@®EZComm.corm.

SOFTWARE

The schematics, PCB artwork, and
sources for both monitors are avail-
able at <ftp.cs.indiana.edu/pub/goo/
mc68030>. The computer-architec-
ture class using the 68030 system
for the lab has a Web site at <www.
cs.indiana.edu/classes/c335home.
html>. To find out more about
networking, including RFCs on the
protocol discussed, check out <ftp.
digital.com/pub/net/info>. Phil
Karn’s ka9q network OS can be
found at <ftp.digital.com/pub/net/
ka9q>.

REFERENCES

D. Comer, Internetworking with
TCP/IP, Principles, Protocols and
Architecture, Prentice Hall,
Englewood Cliffs, NJ, 1988.

W. Ford and W. Top, Assembly
Language and Systems Program-
ming for the M68000 Family, D.C.
Heath and Co., Lexington, MA,
1989.

A.S. Tannebaum, Computer Net-
works, Prentice Hall, Englewood
Cliffs, NJ, 1981.

J.E. Wakerly, Microcomputer Archi-
tecture and Programming, The
68000 Family, John Wiley & Sons,
New York, NY, 1992.

SOURCE

MC68xxx, ColdFire, PowerPC
Motorola

MCU Information Line

P.O. Box 13026

Austin, TX 7871 1-3026

(512) 328-2268

Fax: (512) 891-4465
freeware.aus.sps.mot.com

422 Very Useful
423 Moderately Useful
424 Not Useful





